60.1.272 problem 273
Internal
problem
ID
[10286]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
273
Date
solved
:
Monday, January 27, 2025 at 06:50:26 PM
CAS
classification
:
[_exact, _rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]
\begin{align*} \left (y^{2}+x^{2}+a \right ) y^{\prime }+2 y x&=0 \end{align*}
✓ Solution by Maple
Time used: 0.004 (sec). Leaf size: 309
dsolve((y(x)^2+x^2+a)*diff(y(x),x)+2*x*y(x)=0,y(x), singsol=all)
\begin{align*}
y &= \frac {\left (-12 c_{1} +4 \sqrt {4 x^{6}+12 a \,x^{4}+12 a^{2} x^{2}+4 a^{3}+9 c_{1}^{2}}\right )^{{2}/{3}}-4 x^{2}-4 a}{2 \left (-12 c_{1} +4 \sqrt {4 x^{6}+12 a \,x^{4}+12 a^{2} x^{2}+4 a^{3}+9 c_{1}^{2}}\right )^{{1}/{3}}} \\
y &= -\frac {\left (\frac {1}{4}+\frac {i \sqrt {3}}{4}\right ) \left (-12 c_{1} +4 \sqrt {4 x^{6}+12 a \,x^{4}+12 a^{2} x^{2}+4 a^{3}+9 c_{1}^{2}}\right )^{{2}/{3}}+\left (x^{2}+a \right ) \left (i \sqrt {3}-1\right )}{\left (-12 c_{1} +4 \sqrt {4 x^{6}+12 a \,x^{4}+12 a^{2} x^{2}+4 a^{3}+9 c_{1}^{2}}\right )^{{1}/{3}}} \\
y &= \frac {\frac {\left (i \sqrt {3}-1\right ) \left (-12 c_{1} +4 \sqrt {4 x^{6}+12 a \,x^{4}+12 a^{2} x^{2}+4 a^{3}+9 c_{1}^{2}}\right )^{{2}/{3}}}{4}+\left (x^{2}+a \right ) \left (1+i \sqrt {3}\right )}{\left (-12 c_{1} +4 \sqrt {4 x^{6}+12 a \,x^{4}+12 a^{2} x^{2}+4 a^{3}+9 c_{1}^{2}}\right )^{{1}/{3}}} \\
\end{align*}
✓ Solution by Mathematica
Time used: 4.814 (sec). Leaf size: 299
DSolve[(y[x]^2+x^2+a)*D[y[x],x]+2*x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to \frac {\sqrt [3]{2} \left (\sqrt {4 \left (a+x^2\right )^3+9 c_1{}^2}+3 c_1\right ){}^{2/3}-2 a-2 x^2}{2^{2/3} \sqrt [3]{\sqrt {4 \left (a+x^2\right )^3+9 c_1{}^2}+3 c_1}} \\
y(x)\to \frac {\left (1+i \sqrt {3}\right ) \left (a+x^2\right )}{2^{2/3} \sqrt [3]{\sqrt {4 \left (a+x^2\right )^3+9 c_1{}^2}+3 c_1}}+\frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{\sqrt {4 \left (a+x^2\right )^3+9 c_1{}^2}+3 c_1}}{2 \sqrt [3]{2}} \\
y(x)\to \frac {\left (1-i \sqrt {3}\right ) \left (a+x^2\right )}{2^{2/3} \sqrt [3]{\sqrt {4 \left (a+x^2\right )^3+9 c_1{}^2}+3 c_1}}-\frac {i \left (\sqrt {3}-i\right ) \sqrt [3]{\sqrt {4 \left (a+x^2\right )^3+9 c_1{}^2}+3 c_1}}{2 \sqrt [3]{2}} \\
y(x)\to 0 \\
\end{align*}