Internal
problem
ID
[9905]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
750
Date
solved
:
Wednesday, March 05, 2025 at 08:00:43 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*(1-x)*diff(diff(y(x),x),x)+(5*x-4)*x*diff(y(x),x)+(6-9*x)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1-x)*x^2*D[y[x],{x,2}]+(5*x-4)*x*D[y[x],x]+(6-9*x)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(1 - x)*Derivative(y(x), (x, 2)) + x*(5*x - 4)*Derivative(y(x), x) + (6 - 9*x)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False