60.1.20 problem 20

Internal problem ID [10034]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 20
Date solved : Wednesday, March 05, 2025 at 08:04:57 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }-y^{2}+\left (x^{2}+1\right ) y-2 x&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 67
ode:=diff(y(x),x)-y(x)^2+(x^2+1)*y(x)-2*x = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-x^{2} \left (\int {\mathrm e}^{\frac {x \left (x^{2}+3\right )}{3}}d x \right )+c_{1} x^{2}+{\mathrm e}^{\frac {x \left (x^{2}+3\right )}{3}}-\int {\mathrm e}^{\frac {x \left (x^{2}+3\right )}{3}}d x +c_{1}}{c_{1} -\int {\mathrm e}^{\frac {x \left (x^{2}+3\right )}{3}}d x} \]
Mathematica. Time used: 0.299 (sec). Leaf size: 58
ode=D[y[x],x] - y[x]^2 +(x^2 + 1)*y[x] - 2*x==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {e^{\frac {x^3}{3}+x}}{-\int _1^xe^{\frac {K[1]^3}{3}+K[1]}dK[1]+c_1}+x^2+1 \\ y(x)\to x^2+1 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x + (x**2 + 1)*y(x) - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list