60.1.403 problem 405
Internal
problem
ID
[10417]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
405
Date
solved
:
Tuesday, January 28, 2025 at 04:38:49 PM
CAS
classification
:
[_dAlembert]
\begin{align*} a {y^{\prime }}^{2}+y^{\prime } y-x&=0 \end{align*}
✓ Solution by Maple
Time used: 0.050 (sec). Leaf size: 396
dsolve(a*diff(y(x),x)^2+y(x)*diff(y(x),x)-x = 0,y(x), singsol=all)
\begin{align*}
\frac {c_{1} \left (y-\sqrt {4 a x +y^{2}}\right )}{\sqrt {\frac {-y+\sqrt {4 a x +y^{2}}+2 a}{a}}\, \sqrt {\frac {-y+\sqrt {4 a x +y^{2}}-2 a}{a}}}+x +\frac {\left (y-\sqrt {4 a x +y^{2}}\right ) \left (3 \ln \left (2\right )-2 \ln \left (\frac {2 \sqrt {\frac {y^{2}-y \sqrt {4 a x +y^{2}}-2 a^{2}+2 a x}{a^{2}}}\, a -\left (y-\sqrt {4 a x +y^{2}}\right ) \sqrt {2}}{a}\right )\right ) \sqrt {2}}{4 \sqrt {\frac {y^{2}-y \sqrt {4 a x +y^{2}}-2 a^{2}+2 a x}{a^{2}}}} &= 0 \\
\frac {c_{1} \left (y+\sqrt {4 a x +y^{2}}\right )}{2 \sqrt {\frac {-y-\sqrt {4 a x +y^{2}}+2 a}{a}}\, \sqrt {\frac {-y-\sqrt {4 a x +y^{2}}-2 a}{a}}}+x -\frac {\left (y+\sqrt {4 a x +y^{2}}\right ) \left (-\frac {3 \ln \left (2\right )}{2}+\ln \left (\frac {2 \sqrt {\frac {y \sqrt {4 a x +y^{2}}-2 a^{2}+2 a x +y^{2}}{a^{2}}}\, a -\left (y+\sqrt {4 a x +y^{2}}\right ) \sqrt {2}}{a}\right )\right ) \sqrt {2}}{2 \sqrt {\frac {y \sqrt {4 a x +y^{2}}-2 a^{2}+2 a x +y^{2}}{a^{2}}}} &= 0 \\
\end{align*}
✓ Solution by Mathematica
Time used: 0.466 (sec). Leaf size: 129
DSolve[-x + y[x]*D[y[x],x] + a*D[y[x],x]^2==0,y[x],x,IncludeSingularSolutions -> True]
\[
\text {Solve}\left [\left \{x=-a \exp \left (\int _1^{K[1]}-\frac {1}{K[2]^2 \left (K[2]-\frac {1}{K[2]}\right )}dK[2]\right ) \int \frac {\exp \left (-\int _1^{K[1]}-\frac {1}{K[2]^2 \left (K[2]-\frac {1}{K[2]}\right )}dK[2]\right )}{K[1]-\frac {1}{K[1]}} \, dK[1]+c_1 \exp \left (\int _1^{K[1]}-\frac {1}{K[2]^2 \left (K[2]-\frac {1}{K[2]}\right )}dK[2]\right ),y(x)=\frac {x}{K[1]}-a K[1]\right \},\{y(x),K[1]\}\right ]
\]