Internal
problem
ID
[10426]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
414
Date
solved
:
Monday, January 27, 2025 at 07:43:10 PM
CAS
classification
:
[[_homogeneous, `class G`]]
Time used: 0.087 (sec). Leaf size: 272
\begin{align*}
-\int _{\textit {\_b}}^{x}\frac {y-\sqrt {-4 \textit {\_a}^{4}+y^{2}}}{\textit {\_a} \left (5 y-\sqrt {-4 \textit {\_a}^{4}+y^{2}}\right )}d \textit {\_a} -2 \left (\int _{}^{y}\frac {1+\left (40 \textit {\_f} -8 \sqrt {-4 x^{4}+\textit {\_f}^{2}}\right ) \left (\int _{\textit {\_b}}^{x}\frac {\textit {\_a}^{3}}{\left (-5 \textit {\_f} +\sqrt {-4 \textit {\_a}^{4}+\textit {\_f}^{2}}\right )^{2} \sqrt {-4 \textit {\_a}^{4}+\textit {\_f}^{2}}}d \textit {\_a} \right )}{5 \textit {\_f} -\sqrt {-4 x^{4}+\textit {\_f}^{2}}}d \textit {\_f} \right )+c_{1} &= 0 \\
-\int _{\textit {\_b}}^{x}\frac {y+\sqrt {-4 \textit {\_a}^{4}+y^{2}}}{\left (\sqrt {-4 \textit {\_a}^{4}+y^{2}}+5 y\right ) \textit {\_a}}d \textit {\_a} +2 \left (\int _{}^{y}\frac {-1+8 \left (\sqrt {-4 x^{4}+\textit {\_f}^{2}}+5 \textit {\_f} \right ) \left (\int _{\textit {\_b}}^{x}\frac {\textit {\_a}^{3}}{\left (\sqrt {-4 \textit {\_a}^{4}+\textit {\_f}^{2}}+5 \textit {\_f} \right )^{2} \sqrt {-4 \textit {\_a}^{4}+\textit {\_f}^{2}}}d \textit {\_a} \right )}{\sqrt {-4 x^{4}+\textit {\_f}^{2}}+5 \textit {\_f}}d \textit {\_f} \right )+c_{1} &= 0 \\
\end{align*}
Time used: 1.092 (sec). Leaf size: 107
\begin{align*}
y(x)\to x^2 \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{5 K[2]+\sqrt {K[2]^2-4}}dK[2]\&\right ]\left [\int _1^x-\frac {1}{2 K[3]}dK[3]+c_1\right ] \\
y(x)\to x^2 \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{\sqrt {K[4]^2-4}-5 K[4]}dK[4]\&\right ]\left [\int _1^x\frac {1}{2 K[5]}dK[5]+c_1\right ] \\
\end{align*}