60.1.250 problem 255

Internal problem ID [10264]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 255
Date solved : Wednesday, March 05, 2025 at 08:50:31 AM
CAS classification : [[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x \left (x y-3\right ) y^{\prime }+x y^{2}-y&=0 \end{align*}

Maple. Time used: 0.348 (sec). Leaf size: 72
ode:=x*(x*y(x)-3)*diff(y(x),x)+x*y(x)^2-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {3 \operatorname {LambertW}\left (\frac {\left (-x^{2}\right )^{{1}/{3}} c_{1}}{3}\right )}{x} \\ y &= -\frac {3 \operatorname {LambertW}\left (-\frac {\left (-x^{2}\right )^{{1}/{3}} c_{1} \left (1+i \sqrt {3}\right )}{6}\right )}{x} \\ y &= -\frac {3 \operatorname {LambertW}\left (\frac {\left (-x^{2}\right )^{{1}/{3}} c_{1} \left (i \sqrt {3}-1\right )}{6}\right )}{x} \\ \end{align*}
Mathematica. Time used: 0.172 (sec). Leaf size: 61
ode=x*(x*y[x]-3)*D[y[x],x]+x*y[x]^2-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {x y(x)+6}{\sqrt [3]{2} (x y(x)-3)}}\frac {1}{K[1]^3-\frac {3 K[1]}{2^{2/3}}+1}dK[1]=\frac {2}{27} 2^{2/3} \log (x)+c_1,y(x)\right ] \]
Sympy. Time used: 2.072 (sec). Leaf size: 75
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x*y(x) - 3)*Derivative(y(x), x) + x*y(x)**2 - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {3 W\left (- \frac {\sqrt [3]{C_{1} x^{2}}}{3}\right )}{x}, \ y{\left (x \right )} = - \frac {3 W\left (\frac {\sqrt [3]{C_{1} x^{2}} \left (1 - \sqrt {3} i\right )}{6}\right )}{x}, \ y{\left (x \right )} = - \frac {3 W\left (\frac {\sqrt [3]{C_{1} x^{2}} \left (1 + \sqrt {3} i\right )}{6}\right )}{x}\right ] \]