60.1.266 problem 272

Internal problem ID [10280]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 272
Date solved : Wednesday, March 05, 2025 at 08:58:56 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} \left (y^{2}+x^{2}\right ) y^{\prime }-y^{2}&=0 \end{align*}

Maple. Time used: 0.116 (sec). Leaf size: 42
ode:=(x^2+y(x)^2)*diff(y(x),x)-y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\frac {2 \sqrt {3}\, \operatorname {RootOf}\left (-2 \sqrt {3}\, {\mathrm e}^{\frac {2 \sqrt {3}\, \textit {\_Z}}{3}-c_{1}}+\sqrt {3}\, x -3 x \tan \left (\textit {\_Z} \right )\right )}{3}-c_{1}} \]
Mathematica. Time used: 0.098 (sec). Leaf size: 46
ode=(y[x]^2+x^2)*D[y[x],x]-y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {K[1]^2+1}{K[1] \left (K[1]^2-K[1]+1\right )}dK[1]=-\log (x)+c_1,y(x)\right ] \]
Sympy. Time used: 0.951 (sec). Leaf size: 31
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x**2 + y(x)**2)*Derivative(y(x), x) - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \log {\left (y{\left (x \right )} \right )} = C_{1} + \frac {2 \sqrt {3} \operatorname {atan}{\left (\frac {\sqrt {3} \left (\frac {2 x}{y{\left (x \right )}} - 1\right )}{3} \right )}}{3} \]