60.2.157 problem 733

Internal problem ID [10744]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 733
Date solved : Monday, January 27, 2025 at 09:37:15 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]

\begin{align*} y^{\prime }&=\frac {2 x \sin \left (x \right )-\ln \left (2 x \right )+\ln \left (2 x \right ) x^{4}-2 \ln \left (2 x \right ) x^{2} y+\ln \left (2 x \right ) y^{2}}{\sin \left (x \right )} \end{align*}

Solution by Maple

dsolve(diff(y(x),x) = (2*x*sin(x)-ln(2*x)+ln(2*x)*x^4-2*ln(2*x)*x^2*y(x)+ln(2*x)*y(x)^2)/sin(x),y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.540 (sec). Leaf size: 82

DSolve[D[y[x],x] == Csc[x]*(-Log[2*x] + x^4*Log[2*x] + 2*x*Sin[x] - 2*x^2*Log[2*x]*y[x] + Log[2*x]*y[x]^2),y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {\exp \left (\int _1^x2 \csc (K[5]) \log (2 K[5])dK[5]\right )}{-\int _1^x\exp \left (\int _1^{K[6]}2 \csc (K[5]) \log (2 K[5])dK[5]\right ) \csc (K[6]) \log (2 K[6])dK[6]+c_1}+x^2+1 \\ y(x)\to x^2+1 \\ \end{align*}