60.2.158 problem 734

Internal problem ID [10745]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 734
Date solved : Tuesday, January 28, 2025 at 05:10:28 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} y^{\prime }&=\frac {\left (-\ln \left (y\right ) x -\ln \left (y\right )+x^{3}\right ) y}{1+x} \end{align*}

Solution by Maple

Time used: 0.053 (sec). Leaf size: 33

dsolve(diff(y(x),x) = (-ln(y(x))*x-ln(y(x))+x^3)*y(x)/(x+1),y(x), singsol=all)
 
\[ y = {\mathrm e}^{x^{2}-3 x +4+c_{1} {\mathrm e}^{-x}+\operatorname {Ei}_{1}\left (-x -1\right ) {\mathrm e}^{-x -1}} \]

Solution by Mathematica

Time used: 0.231 (sec). Leaf size: 92

DSolve[D[y[x],x] == ((x^3 - Log[y[x]] - x*Log[y[x]])*y[x])/(1 + x),y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\int _1^{y(x)}\left (-\int _1^x-\frac {e^{K[1]}}{K[2]}dK[1]-\frac {e^x}{K[2]}\right )dK[2]+\int _1^x\left (e^{K[1]} K[1]^2-e^{K[1]} K[1]-e^{K[1]} (\log (y(x))-1)-\frac {e^{K[1]}}{K[1]+1}\right )dK[1]=c_1,y(x)\right ] \]