60.2.175 problem 751

Internal problem ID [10762]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 751
Date solved : Monday, January 27, 2025 at 09:41:33 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} y^{\prime }&=\frac {\left (\ln \left (y\right ) x +\ln \left (y\right )+x^{4}\right ) y}{x \left (1+x \right )} \end{align*}

Solution by Maple

Time used: 0.010 (sec). Leaf size: 24

dsolve(diff(y(x),x) = (ln(y(x))*x+ln(y(x))+x^4)*y(x)/x/(x+1),y(x), singsol=all)
 
\[ y = \left (x +1\right )^{x} {\mathrm e}^{\frac {x \left (x^{2}+2 c_{1} -2 x \right )}{2}} \]

Solution by Mathematica

Time used: 0.208 (sec). Leaf size: 73

DSolve[D[y[x],x] == ((x^4 + Log[y[x]] + x*Log[y[x]])*y[x])/(x*(1 + x)),y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\int _1^{y(x)}\left (\frac {1}{x K[2]}-\int _1^x-\frac {1}{K[1]^2 K[2]}dK[1]\right )dK[2]+\int _1^x\left (-K[1]-\frac {1}{K[1]+1}+1-\frac {\log (y(x))}{K[1]^2}\right )dK[1]=c_1,y(x)\right ] \]