60.2.176 problem 752

Internal problem ID [10763]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 752
Date solved : Tuesday, January 28, 2025 at 05:11:48 PM
CAS classification : unknown

\begin{align*} y^{\prime }&=\frac {\cos \left (y\right ) \left (\cos \left (y\right ) x^{3}-x -1\right )}{\left (x \sin \left (y\right )-1\right ) \left (1+x \right )} \end{align*}

Solution by Maple

Time used: 0.706 (sec). Leaf size: 723

dsolve(diff(y(x),x) = cos(y(x))/(x*sin(y(x))-1)*(cos(y(x))*x^3-x-1)/(x+1),y(x), singsol=all)
 
\begin{align*} y &= \arctan \left (\frac {\left (2 x^{3}-3 x^{2}-6 \ln \left (x +1\right )+6 c_{1} +6 x \right ) \sqrt {36 \ln \left (x +1\right )^{2}+\left (-24 x^{3}+36 x^{2}-72 c_{1} -72 x \right ) \ln \left (x +1\right )+4 x^{6}-12 x^{5}+33 x^{4}+\left (24 c_{1} -36\right ) x^{3}-36 c_{1} x^{2}+72 c_{1} x +36 c_{1}^{2}+36}+36 x}{36 \ln \left (x +1\right )^{2}+\left (-24 x^{3}+36 x^{2}-72 c_{1} -72 x \right ) \ln \left (x +1\right )+4 x^{6}-12 x^{5}+33 x^{4}+\left (24 c_{1} -36\right ) x^{3}+\left (-36 c_{1} +36\right ) x^{2}+72 c_{1} x +36 c_{1}^{2}+36}, \frac {12 x^{4}-18 x^{3}-36 \ln \left (x +1\right ) x +36 c_{1} x +36 x^{2}-6 \sqrt {36 \ln \left (x +1\right )^{2}+\left (-24 x^{3}+36 x^{2}-72 c_{1} -72 x \right ) \ln \left (x +1\right )+4 x^{6}-12 x^{5}+33 x^{4}+\left (24 c_{1} -36\right ) x^{3}-36 c_{1} x^{2}+72 c_{1} x +36 c_{1}^{2}+36}}{36 \ln \left (x +1\right )^{2}+\left (-24 x^{3}+36 x^{2}-72 c_{1} -72 x \right ) \ln \left (x +1\right )+4 x^{6}-12 x^{5}+33 x^{4}+\left (24 c_{1} -36\right ) x^{3}+\left (-36 c_{1} +36\right ) x^{2}+72 c_{1} x +36 c_{1}^{2}+36}\right ) \\ y &= \arctan \left (\frac {\left (-2 x^{3}+3 x^{2}+6 \ln \left (x +1\right )-6 c_{1} -6 x \right ) \sqrt {36 \ln \left (x +1\right )^{2}+\left (-24 x^{3}+36 x^{2}-72 c_{1} -72 x \right ) \ln \left (x +1\right )+4 x^{6}-12 x^{5}+33 x^{4}+\left (24 c_{1} -36\right ) x^{3}-36 c_{1} x^{2}+72 c_{1} x +36 c_{1}^{2}+36}+36 x}{36 \ln \left (x +1\right )^{2}+\left (-24 x^{3}+36 x^{2}-72 c_{1} -72 x \right ) \ln \left (x +1\right )+4 x^{6}-12 x^{5}+33 x^{4}+\left (24 c_{1} -36\right ) x^{3}+\left (-36 c_{1} +36\right ) x^{2}+72 c_{1} x +36 c_{1}^{2}+36}, \frac {12 x^{4}-18 x^{3}-36 \ln \left (x +1\right ) x +36 c_{1} x +36 x^{2}+6 \sqrt {36 \ln \left (x +1\right )^{2}+\left (-24 x^{3}+36 x^{2}-72 c_{1} -72 x \right ) \ln \left (x +1\right )+4 x^{6}-12 x^{5}+33 x^{4}+\left (24 c_{1} -36\right ) x^{3}-36 c_{1} x^{2}+72 c_{1} x +36 c_{1}^{2}+36}}{36 \ln \left (x +1\right )^{2}+\left (-24 x^{3}+36 x^{2}-72 c_{1} -72 x \right ) \ln \left (x +1\right )+4 x^{6}-12 x^{5}+33 x^{4}+\left (24 c_{1} -36\right ) x^{3}+\left (-36 c_{1} +36\right ) x^{2}+72 c_{1} x +36 c_{1}^{2}+36}\right ) \\ \end{align*}

Solution by Mathematica

Time used: 5.405 (sec). Leaf size: 867

DSolve[D[y[x],x] == (Cos[y[x]]*(-1 - x + x^3*Cos[y[x]]))/((1 + x)*(-1 + x*Sin[y[x]])),y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \tan ^{-1}\left (\frac {6 \left (2 x^4-3 x^3+6 x^2+\sqrt {4 x^6-12 x^5+33 x^4+12 (-3+2 c_1) x^3-36 c_1 x^2-12 \left (2 x^3-3 x^2+6 x+6 c_1\right ) \log (x+1)+36 \log ^2(x+1)+72 c_1 x+36 \left (1+c_1{}^2\right )}-6 x \log (x+1)+6 c_1 x\right )}{4 x^6-12 x^5+33 x^4+12 (-3+2 c_1) x^3-36 (-1+c_1) x^2-12 \left (2 x^3-3 x^2+6 x+6 c_1\right ) \log (x+1)+36 \log ^2(x+1)+72 c_1 x+36 \left (1+c_1{}^2\right )},x-\frac {\left (2 x^3-3 x^2+6 x-6 \log (x+1)+6 c_1\right ) \left (2 x^4-3 x^3+6 x^2+\sqrt {4 x^6-12 x^5+33 x^4+12 (-3+2 c_1) x^3-36 c_1 x^2-12 \left (2 x^3-3 x^2+6 x+6 c_1\right ) \log (x+1)+36 \log ^2(x+1)+72 c_1 x+36 \left (1+c_1{}^2\right )}-6 x \log (x+1)+6 c_1 x\right )}{4 x^6-12 x^5+33 x^4+12 (-3+2 c_1) x^3-36 (-1+c_1) x^2-12 \left (2 x^3-3 x^2+6 x+6 c_1\right ) \log (x+1)+36 \log ^2(x+1)+72 c_1 x+36 \left (1+c_1{}^2\right )}\right ) \\ y(x)\to \tan ^{-1}\left (-\frac {6 \left (-2 x^4+3 x^3-6 x^2+\sqrt {4 x^6-12 x^5+33 x^4+12 (-3+2 c_1) x^3-36 c_1 x^2-12 \left (2 x^3-3 x^2+6 x+6 c_1\right ) \log (x+1)+36 \log ^2(x+1)+72 c_1 x+36 \left (1+c_1{}^2\right )}+6 x \log (x+1)-6 c_1 x\right )}{4 x^6-12 x^5+33 x^4+12 (-3+2 c_1) x^3-36 (-1+c_1) x^2-12 \left (2 x^3-3 x^2+6 x+6 c_1\right ) \log (x+1)+36 \log ^2(x+1)+72 c_1 x+36 \left (1+c_1{}^2\right )},x-\frac {\left (2 x^3-3 x^2+6 x-6 \log (x+1)+6 c_1\right ) \left (2 x^4-3 x^3+6 x^2-\sqrt {4 x^6-12 x^5+33 x^4+12 (-3+2 c_1) x^3-36 c_1 x^2-12 \left (2 x^3-3 x^2+6 x+6 c_1\right ) \log (x+1)+36 \log ^2(x+1)+72 c_1 x+36 \left (1+c_1{}^2\right )}-6 x \log (x+1)+6 c_1 x\right )}{4 x^6-12 x^5+33 x^4+12 (-3+2 c_1) x^3-36 (-1+c_1) x^2-12 \left (2 x^3-3 x^2+6 x+6 c_1\right ) \log (x+1)+36 \log ^2(x+1)+72 c_1 x+36 \left (1+c_1{}^2\right )}\right ) \\ y(x)\to -\frac {\pi }{2} \\ y(x)\to \frac {\pi }{2} \\ \end{align*}