7.16.10 problem 10

Internal problem ID [507]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.4 (Method of Frobenius: The exceptional cases). Problems at page 246
Problem number : 10
Date solved : Monday, January 27, 2025 at 02:54:14 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 34

Order:=6; 
dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+(x^2+1)*y(x)=0,y(x),type='series',x=0);
 
\[ y = x \left (\left (c_2 \ln \left (x \right )+c_1 \right ) \left (1-\frac {1}{4} x^{2}+\frac {1}{64} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\left (\frac {1}{4} x^{2}-\frac {3}{128} x^{4}+\operatorname {O}\left (x^{6}\right )\right ) c_2 \right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 65

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]-x*D[y[x],x]+(x^2+1)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 x \left (\frac {x^4}{64}-\frac {x^2}{4}+1\right )+c_2 \left (x \left (\frac {x^2}{4}-\frac {3 x^4}{128}\right )+x \left (\frac {x^4}{64}-\frac {x^2}{4}+1\right ) \log (x)\right ) \]