7.16.11 problem 11

Internal problem ID [508]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.4 (Method of Frobenius: The exceptional cases). Problems at page 246
Problem number : 11
Date solved : Monday, January 27, 2025 at 02:54:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }+4 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 48

Order:=6; 
dsolve(x^2*diff(y(x),x$2)+(x^2-3*x)*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);
 
\[ y = x^{2} \left (\left (c_2 \ln \left (x \right )+c_1 \right ) \left (1-2 x +\frac {3}{2} x^{2}-\frac {2}{3} x^{3}+\frac {5}{24} x^{4}-\frac {1}{20} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (3 x -\frac {13}{4} x^{2}+\frac {31}{18} x^{3}-\frac {173}{288} x^{4}+\frac {187}{1200} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_2 \right ) \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 122

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]+(x^2-3*x)*D[y[x],x]+4*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (-\frac {x^5}{20}+\frac {5 x^4}{24}-\frac {2 x^3}{3}+\frac {3 x^2}{2}-2 x+1\right ) x^2+c_2 \left (\left (\frac {187 x^5}{1200}-\frac {173 x^4}{288}+\frac {31 x^3}{18}-\frac {13 x^2}{4}+3 x\right ) x^2+\left (-\frac {x^5}{20}+\frac {5 x^4}{24}-\frac {2 x^3}{3}+\frac {3 x^2}{2}-2 x+1\right ) x^2 \log (x)\right ) \]