Internal
problem
ID
[10961]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
951
Date
solved
:
Monday, January 27, 2025 at 10:32:09 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Abel]
✓ Solution by Maple
Time used: 0.044 (sec). Leaf size: 41
dsolve(diff(y(x),x) = -1/2*x+1+y(x)^2+1/2*x^2*y(x)+y(x)*a*x+1/16*x^4+1/4*x^3*a+1/4*a^2*x^2+y(x)^3+3/4*x^2*y(x)^2+3/2*a*x*y(x)^2+3/16*y(x)*x^4+3/4*y(x)*a*x^3+3/4*a^2*x^2*y(x)+1/64*x^6+3/32*x^5*a+3/16*a^2*x^4+1/8*a^3*x^3,y(x), singsol=all)
✓ Solution by Mathematica
Time used: 0.247 (sec). Leaf size: 93
DSolve[D[y[x],x] == 1 - x/2 + (a^2*x^2)/4 + (a*x^3)/4 + (a^3*x^3)/8 + x^4/16 + (3*a^2*x^4)/16 + (3*a*x^5)/32 + x^6/64 + a*x*y[x] + (x^2*y[x])/2 + (3*a^2*x^2*y[x])/4 + (3*a*x^3*y[x])/4 + (3*x^4*y[x])/16 + y[x]^2 + (3*a*x*y[x]^2)/2 + (3*x^2*y[x]^2)/4 + y[x]^3,y[x],x,IncludeSingularSolutions -> True]