60.2.375 problem 952

Internal problem ID [10962]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 952
Date solved : Tuesday, January 28, 2025 at 05:36:33 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} y^{\prime }&=-\frac {-y+\sqrt {x^{2}+y^{2}}\, x^{2}-x \sqrt {x^{2}+y^{2}}\, y+x^{4} \sqrt {x^{2}+y^{2}}-x^{3} \sqrt {x^{2}+y^{2}}\, y+x^{5} \sqrt {x^{2}+y^{2}}-x^{4} \sqrt {x^{2}+y^{2}}\, y}{x} \end{align*}

Solution by Maple

Time used: 0.122 (sec). Leaf size: 63

dsolve(diff(y(x),x) = -(-y(x)+(y(x)^2+x^2)^(1/2)*x^2-x*(y(x)^2+x^2)^(1/2)*y(x)+x^4*(y(x)^2+x^2)^(1/2)-x^3*(y(x)^2+x^2)^(1/2)*y(x)+x^5*(y(x)^2+x^2)^(1/2)-x^4*(y(x)^2+x^2)^(1/2)*y(x))/x,y(x), singsol=all)
 
\[ \ln \left (\frac {x \left (\sqrt {2 x^{2}+2 y^{2}}+y+x \right )}{y-x}\right )+\frac {\left (4 x^{5}+5 x^{4}+10 x^{2}\right ) \sqrt {2}}{20}-c_{1} +\ln \left (2\right )-\ln \left (x \right ) = 0 \]

Solution by Mathematica

Time used: 60.295 (sec). Leaf size: 239

DSolve[D[y[x],x] == (y[x] - x^2*Sqrt[x^2 + y[x]^2] - x^4*Sqrt[x^2 + y[x]^2] - x^5*Sqrt[x^2 + y[x]^2] + x*y[x]*Sqrt[x^2 + y[x]^2] + x^3*y[x]*Sqrt[x^2 + y[x]^2] + x^4*y[x]*Sqrt[x^2 + y[x]^2])/x,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {x-8 \sqrt {x^2 \sinh ^6\left (\frac {4 x^5+5 x^4+10 x^2+20 c_1}{10 \sqrt {2}}\right ) \text {csch}^4\left (\frac {4 x^5+5 x^4+10 x^2+20 c_1}{5 \sqrt {2}}\right )}}{-1+2 \tanh ^2\left (\frac {4 x^5+5 x^4+10 x^2+20 c_1}{10 \sqrt {2}}\right )} \\ y(x)\to \frac {x+8 \sqrt {x^2 \sinh ^6\left (\frac {4 x^5+5 x^4+10 x^2+20 c_1}{10 \sqrt {2}}\right ) \text {csch}^4\left (\frac {4 x^5+5 x^4+10 x^2+20 c_1}{5 \sqrt {2}}\right )}}{-1+2 \tanh ^2\left (\frac {4 x^5+5 x^4+10 x^2+20 c_1}{10 \sqrt {2}}\right )} \\ \end{align*}