Internal
problem
ID
[10977]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
967
Date
solved
:
Monday, January 27, 2025 at 10:36:52 PM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], _Abel]
✓ Solution by Maple
Time used: 0.005 (sec). Leaf size: 91
dsolve(diff(y(x),x) = -1/216*x/(x^2+1)^4*(-513-432*x-288*y(x)*x^8+288*y(x)*x^7-288*y(x)*x^6+864*y(x)^2*x^5-648*y(x)^3*x^4-216*y(x)*x^4-456*x^6-576*x^5+432*y(x)^2*x^7-216*y(x)^2*x^6+1008*x^5*y(x)-216*x^6*y(x)^3-972*x^4*y(x)^2+432*x^3*y(x)^2+720*x^3*y(x)-648*x^2*y(x)^3-1296*x^2*y(x)^2-594*x^2*y(x)-864*x^4-378*y(x)-216*y(x)^3-756*x^3-540*y(x)^2-1134*x^2-144*x^7+64*x^9-96*x^8),y(x), singsol=all)
✓ Solution by Mathematica
Time used: 1.480 (sec). Leaf size: 129
DSolve[D[y[x],x] == -1/216*(x*(-513 - 432*x - 1134*x^2 - 756*x^3 - 864*x^4 - 576*x^5 - 456*x^6 - 144*x^7 - 96*x^8 + 64*x^9 - 378*y[x] - 594*x^2*y[x] + 720*x^3*y[x] - 216*x^4*y[x] + 1008*x^5*y[x] - 288*x^6*y[x] + 288*x^7*y[x] - 288*x^8*y[x] - 540*y[x]^2 - 1296*x^2*y[x]^2 + 432*x^3*y[x]^2 - 972*x^4*y[x]^2 + 864*x^5*y[x]^2 - 216*x^6*y[x]^2 + 432*x^7*y[x]^2 - 216*y[x]^3 - 648*x^2*y[x]^3 - 648*x^4*y[x]^3 - 216*x^6*y[x]^3))/(1 + x^2)^4,y[x],x,IncludeSingularSolutions -> True]