Internal
problem
ID
[10978]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
968
Date
solved
:
Monday, January 27, 2025 at 10:36:56 PM
CAS
classification
:
[[_homogeneous, `class D`]]
✓ Solution by Maple
Time used: 0.028 (sec). Leaf size: 23
dsolve(diff(y(x),x) = 1/2*(-sin(y(x)/x)*y(x)*x-y(x)*sin(y(x)/x)+y(x)*sin(3/2*y(x)/x)*cos(1/2*y(x)/x)*x+y(x)*sin(3/2*y(x)/x)*cos(1/2*y(x)/x)+y(x)*cos(1/2*y(x)/x)*sin(1/2*y(x)/x)*x+y(x)*cos(1/2*y(x)/x)*sin(1/2*y(x)/x)+2*sin(y(x)/x)*x^4*cos(1/2*y(x)/x)*sin(1/2*y(x)/x))/cos(y(x)/x)/cos(1/2*y(x)/x)/sin(1/2*y(x)/x)/x/(x+1),y(x), singsol=all)
✓ Solution by Mathematica
Time used: 46.919 (sec). Leaf size: 36
DSolve[D[y[x],x] == (Csc[y[x]/(2*x)]*Sec[y[x]/(2*x)]*Sec[y[x]/x]*(x^4*Cos[y[x]/(2*x)]*Sin[y[x]/(2*x)]*Sin[y[x]/x] + (Cos[y[x]/(2*x)]*Sin[y[x]/(2*x)]*y[x])/2 + (x*Cos[y[x]/(2*x)]*Sin[y[x]/(2*x)]*y[x])/2 - (Sin[y[x]/x]*y[x])/2 - (x*Sin[y[x]/x]*y[x])/2 + (Cos[y[x]/(2*x)]*Sin[(3*y[x])/(2*x)]*y[x])/2 + (x*Cos[y[x]/(2*x)]*Sin[(3*y[x])/(2*x)]*y[x])/2))/(x*(1 + x)),y[x],x,IncludeSingularSolutions -> True]