60.2.391 problem 968

Internal problem ID [10978]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 968
Date solved : Monday, January 27, 2025 at 10:36:56 PM
CAS classification : [[_homogeneous, `class D`]]

\begin{align*} y^{\prime }&=\frac {-\sin \left (\frac {y}{x}\right ) y x -y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right ) x +y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{4} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x \left (1+x \right )} \end{align*}

Solution by Maple

Time used: 0.028 (sec). Leaf size: 23

dsolve(diff(y(x),x) = 1/2*(-sin(y(x)/x)*y(x)*x-y(x)*sin(y(x)/x)+y(x)*sin(3/2*y(x)/x)*cos(1/2*y(x)/x)*x+y(x)*sin(3/2*y(x)/x)*cos(1/2*y(x)/x)+y(x)*cos(1/2*y(x)/x)*sin(1/2*y(x)/x)*x+y(x)*cos(1/2*y(x)/x)*sin(1/2*y(x)/x)+2*sin(y(x)/x)*x^4*cos(1/2*y(x)/x)*sin(1/2*y(x)/x))/cos(y(x)/x)/cos(1/2*y(x)/x)/sin(1/2*y(x)/x)/x/(x+1),y(x), singsol=all)
 
\[ y = \frac {\arccos \left (1+c_{1} \left (x +1\right )^{2} {\mathrm e}^{x \left (x -2\right )}\right ) x}{2} \]

Solution by Mathematica

Time used: 46.919 (sec). Leaf size: 36

DSolve[D[y[x],x] == (Csc[y[x]/(2*x)]*Sec[y[x]/(2*x)]*Sec[y[x]/x]*(x^4*Cos[y[x]/(2*x)]*Sin[y[x]/(2*x)]*Sin[y[x]/x] + (Cos[y[x]/(2*x)]*Sin[y[x]/(2*x)]*y[x])/2 + (x*Cos[y[x]/(2*x)]*Sin[y[x]/(2*x)]*y[x])/2 - (Sin[y[x]/x]*y[x])/2 - (x*Sin[y[x]/x]*y[x])/2 + (Cos[y[x]/(2*x)]*Sin[(3*y[x])/(2*x)]*y[x])/2 + (x*Cos[y[x]/(2*x)]*Sin[(3*y[x])/(2*x)]*y[x])/2))/(x*(1 + x)),y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to x \arcsin \left (\exp \left (\int _1^x\frac {K[1]^2}{K[1]+1}dK[1]+c_1\right )\right ) \\ y(x)\to 0 \\ \end{align*}