Internal
problem
ID
[10864]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
868
Date
solved
:
Wednesday, March 05, 2025 at 01:13:23 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Abel]
ode:=diff(y(x),x) = 2*x+1+y(x)^2-2*x^2*y(x)+x^4+y(x)^3-3*x^2*y(x)^2+3*y(x)*x^4-x^6; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == 1 + 2*x + x^4 - x^6 - 2*x^2*y[x] + 3*x^4*y[x] + y[x]^2 - 3*x^2*y[x]^2 + y[x]^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**6 - 3*x**4*y(x) - x**4 + 3*x**2*y(x)**2 + 2*x**2*y(x) - 2*x - y(x)**3 - y(x)**2 + Derivative(y(x), x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out