Internal
problem
ID
[10865]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
869
Date
solved
:
Friday, March 14, 2025 at 02:45:27 AM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class A`]]
ode:=diff(y(x),x) = 1/(x^2-y(x))*(-x+1-2*y(x)+3*x^2-2*x^2*y(x)+2*x^4+x^3-2*x^3*y(x)+2*x^5); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (1 - x + 3*x^2 + x^3 + 2*x^4 + 2*x^5 - 2*y[x] - 2*x^2*y[x] - 2*x^3*y[x])/(x^2 - y[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (2*x**5 + 2*x**4 - 2*x**3*y(x) + x**3 - 2*x**2*y(x) + 3*x**2 - x - 2*y(x) + 1)/(x**2 - y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out