Internal
problem
ID
[10915]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
919
Date
solved
:
Wednesday, March 05, 2025 at 01:18:44 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational]
ode:=diff(y(x),x) = y(x)^(3/2)*(x-y(x)+y(x)^(1/2))/(y(x)^(3/2)*x-y(x)^(5/2)+y(x)^2+x^3-3*x^2*y(x)+3*x*y(x)^2-y(x)^3); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == ((x + Sqrt[y[x]] - y[x])*y[x]^(3/2))/(x^3 - 3*x^2*y[x] + x*y[x]^(3/2) + y[x]^2 + 3*x*y[x]^2 - y[x]^(5/2) - y[x]^3); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-x - sqrt(y(x)) + y(x))*y(x)**(3/2)/(x**3 - 3*x**2*y(x) + x*y(x)**(3/2) + 3*x*y(x)**2 - y(x)**(5/2) - y(x)**3 + y(x)**2) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out