60.3.288 problem 1293

Internal problem ID [11298]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1293
Date solved : Tuesday, January 28, 2025 at 05:58:00 PM
CAS classification : [_Jacobi]

\begin{align*} 144 x \left (x -1\right ) y^{\prime \prime }+\left (120 x -48\right ) y^{\prime }+y&=0 \end{align*}

Solution by Maple

Time used: 0.236 (sec). Leaf size: 33

dsolve(144*x*(x-1)*diff(diff(y(x),x),x)+(120*x-48)*diff(y(x),x)+y(x)=0,y(x), singsol=all)
 
\[ y = \left (\operatorname {LegendreQ}\left (-\frac {1}{2}, \frac {2}{3}, \sqrt {1-x}\right ) c_{2} +\operatorname {LegendreP}\left (-\frac {1}{2}, \frac {2}{3}, \sqrt {1-x}\right ) c_{1} \right ) x^{{1}/{3}} \]

Solution by Mathematica

Time used: 0.350 (sec). Leaf size: 44

DSolve[y[x] + (-48 + 120*x)*D[y[x],x] + 144*(-1 + x)*x*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to (-1)^{2/3} c_2 x^{2/3} \operatorname {Hypergeometric2F1}\left (\frac {7}{12},\frac {7}{12},\frac {5}{3},x\right )+c_1 \operatorname {Hypergeometric2F1}\left (-\frac {1}{12},-\frac {1}{12},\frac {1}{3},x\right ) \]