60.2.421 problem 999

Internal problem ID [10995]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 999
Date solved : Wednesday, March 05, 2025 at 01:36:46 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _Riccati]

\begin{align*} y^{\prime }&=\frac {\left (y-x +\ln \left (x +1\right )\right )^{2}+x}{x +1} \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 36
ode:=diff(y(x),x) = ((y(x)-x+ln(1+x))^2+x)/(1+x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-\ln \left (x +1\right )^{2}+\left (x -c_{1} \right ) \ln \left (x +1\right )+c_{1} x -1}{\ln \left (x +1\right )+c_{1}} \]
Mathematica. Time used: 0.337 (sec). Leaf size: 36
ode=D[y[x],x] == (x + (-x + Log[1 + x] + y[x])^2)/(1 + x); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to x-\log (x+1)+\frac {1}{-\log (x+1)+c_1} \\ y(x)\to x-\log (x+1) \\ \end{align*}
Sympy. Time used: 1.600 (sec). Leaf size: 34
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (x + (-x + y(x) + log(x + 1))**2)/(x + 1),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} x - C_{1} \log {\left (x + 1 \right )} + x \log {\left (x + 1 \right )} - \log {\left (x + 1 \right )}^{2} - 1}{C_{1} + \log {\left (x + 1 \right )}} \]