60.3.368 problem 1374

Internal problem ID [11378]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1374
Date solved : Tuesday, January 28, 2025 at 06:04:44 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }&=\frac {2 x \left (2 a -1\right ) y^{\prime }}{x^{2}-1}-\frac {\left (x^{2} \left (2 a \left (2 a -1\right )-v \left (v +1\right )\right )+2 a +v \left (v +1\right )\right ) y}{\left (x^{2}-1\right )^{2}} \end{align*}

Solution by Maple

Time used: 0.122 (sec). Leaf size: 23

dsolve(diff(diff(y(x),x),x) = 2*x*(2*a-1)/(x^2-1)*diff(y(x),x)-(x^2*(2*a*(2*a-1)-v*(v+1))+2*a+v*(v+1))/(x^2-1)^2*y(x),y(x), singsol=all)
 
\[ y = \left (c_{1} \operatorname {LegendreP}\left (v , x\right )+c_{2} \operatorname {LegendreQ}\left (v , x\right )\right ) \left (x^{2}-1\right )^{a} \]

Solution by Mathematica

Time used: 0.057 (sec). Leaf size: 26

DSolve[D[y[x],{x,2}] == -(((2*a + v*(1 + v) + (2*a*(-1 + 2*a) - v*(1 + v))*x^2)*y[x])/(-1 + x^2)^2) + (2*(-1 + 2*a)*x*D[y[x],x])/(-1 + x^2),y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \left (x^2-1\right )^a (c_1 \operatorname {LegendreP}(v,x)+c_2 \operatorname {LegendreQ}(v,x)) \]