Internal
problem
ID
[11023]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1029
Date
solved
:
Thursday, March 13, 2025 at 08:23:34 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-(f(x)^2+diff(f(x),x))*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-(y[x]*(f[x]^2 + Derivative[1][f][x])) + D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") f = Function("f") ode = Eq((-f(x)**2 - Derivative(f(x), x))*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : cannot determine truth value of Relational