60.3.396 problem 1402

Internal problem ID [11406]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1402
Date solved : Tuesday, January 28, 2025 at 06:04:56 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }&=-\frac {\left (\left (1-4 a \right ) x^{2}-1\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (\left (-v^{2}+x^{2}\right ) \left (x^{2}-1\right )^{2}+4 a \left (a +1\right ) x^{4}-2 a \,x^{2} \left (x^{2}-1\right )\right ) y}{x^{2} \left (x^{2}-1\right )^{2}} \end{align*}

Solution by Maple

Time used: 1.520 (sec). Leaf size: 56

dsolve(diff(diff(y(x),x),x) = -1/x/(x^2-1)*((1-4*a)*x^2-1)*diff(y(x),x)-((-v^2+x^2)*(x^2-1)^2+4*a*(a+1)*x^4-2*a*x^2*(x^2-1))/x^2/(x^2-1)^2*y(x),y(x), singsol=all)
 
\[ y = -\left (x^{2}-1\right )^{a +1} \left (\operatorname {HeunC}\left (0, v , 1, \frac {1}{4}, \frac {a}{2}+\frac {1}{4}, x^{2}\right ) x^{v} c_{1} +\operatorname {HeunC}\left (0, -v , 1, \frac {1}{4}, \frac {a}{2}+\frac {1}{4}, x^{2}\right ) x^{-v} c_{2} \right ) \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[D[y[x],{x,2}] == -(((4*a*(1 + a)*x^4 - 2*a*x^2*(-1 + x^2) + (-1 + x^2)^2*(-v^2 + x^2))*y[x])/(x^2*(-1 + x^2)^2)) - ((-1 + (1 - 4*a)*x^2)*D[y[x],x])/(x*(-1 + x^2)),y[x],x,IncludeSingularSolutions -> True]
 

Not solved