Internal
problem
ID
[11065]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1080
Date
solved
:
Thursday, March 13, 2025 at 08:23:55 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-(diff(f(x),x)/f(x)+2*a)*diff(y(x),x)+(a*diff(f(x),x)/f(x)+a^2-b^2*f(x)^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=y[x]*(a^2 - b^2*f[x]^2 + (a*Derivative[1][f][x])/f[x]) - (2*a + Derivative[1][f][x]/f[x])*D[y[x],x] + D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") f = Function("f") ode = Eq((-2*a - Derivative(f(x), x)/f(x))*Derivative(y(x), x) + (a**2 + a*Derivative(f(x), x)/f(x) - b**2*f(x)**2)*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : cannot determine truth value of Relational