Internal
problem
ID
[11448]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1445
Date
solved
:
Tuesday, January 28, 2025 at 06:06:28 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
✓ Solution by Maple
Time used: 0.353 (sec). Leaf size: 20
dsolve(diff(diff(y(x),x),x) = -(2*f(x)*diff(g(x),x)^2*g(x)-(g(x)^2-1)*(f(x)*diff(diff(g(x),x),x)+2*diff(f(x),x)*diff(g(x),x)))/f(x)/diff(g(x),x)/(g(x)^2-1)*diff(y(x),x)-((g(x)^2-1)*(diff(f(x),x)*(f(x)*diff(diff(g(x),x),x)+2*diff(f(x),x)*diff(g(x),x))-f(x)*diff(diff(f(x),x),x)*diff(g(x),x))-(2*diff(f(x),x)*g(x)+v*(v+1)*f(x)*diff(g(x),x))*f(x)*diff(g(x),x)^2)/f(x)^2/diff(g(x),x)/(g(x)^2-1)*y(x),y(x), singsol=all)
✓ Solution by Mathematica
Time used: 0.171 (sec). Leaf size: 23
DSolve[D[y[x],{x,2}] == -((D[y[x],x]*(2*f[x]*g[x]*Derivative[1][g][x]^2 - (-1 + g[x]^2)*(2*Derivative[1][f][x]*Derivative[1][g][x] + f[x]*Derivative[2][g][x])))/(f[x]*(-1 + g[x]^2)*Derivative[1][g][x])) - (y[x]*(-(f[x]*Derivative[1][g][x]^2*(2*g[x]*Derivative[1][f][x] + v*(1 + v)*f[x]*Derivative[1][g][x])) + (-1 + g[x]^2)*(-(f[x]*Derivative[1][g][x]*Derivative[2][f][x]) + Derivative[1][f][x]*(2*Derivative[1][f][x]*Derivative[1][g][x] + f[x]*Derivative[2][g][x]))))/(f[x]^2*(-1 + g[x]^2)*Derivative[1][g][x]),y[x],x,IncludeSingularSolutions -> True]