Internal
problem
ID
[11067]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1085
Date
solved
:
Thursday, March 13, 2025 at 08:23:58 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-(diff(diff(g(x),x),x)/diff(g(x),x)+(2*v-1)*diff(g(x),x)/g(x)+2*diff(h(x),x)/h(x))*diff(y(x),x)+(diff(h(x),x)/h(x)*(diff(diff(g(x),x),x)/diff(g(x),x)+(2*v-1)*diff(g(x),x)/g(x)+2*diff(h(x),x)/h(x))-diff(diff(h(x),x),x)/h(x)+diff(g(x),x)^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-(D[y[x],x]*(((-1 + 2*v)*Derivative[1][g][x])/g[x] + (2*Derivative[1][h][x])/h[x] + Derivative[2][g][x]/Derivative[1][g][x])) + y[x]*(Derivative[1][g][x]^2 + (Derivative[1][h][x]*(((-1 + 2*v)*Derivative[1][g][x])/g[x] + (2*Derivative[1][h][x])/h[x] + Derivative[2][g][x]/Derivative[1][g][x]))/h[x] - Derivative[2][h][x]/h[x]) + D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") v = symbols("v") y = Function("y") h = Function("h") g = Function("g") ode = Eq(((1 - 2*v)*Derivative(g(x), x)/g(x) - Derivative(g(x), (x, 2))/Derivative(g(x), x) - 2*Derivative(h(x), x)/h(x))*Derivative(y(x), x) + (((2*v - 1)*Derivative(g(x), x)/g(x) + Derivative(g(x), (x, 2))/Derivative(g(x), x) + 2*Derivative(h(x), x)/h(x))*Derivative(h(x), x)/h(x) + Derivative(g(x), x)**2 - Derivative(h(x), (x, 2))/h(x))*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : cannot determine truth value of Relational