60.4.10 problem 1458

Internal problem ID [11461]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 3, linear third order
Problem number : 1458
Date solved : Monday, January 27, 2025 at 11:22:24 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime \prime }+\left (-n^{2}+1\right ) \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y^{\prime }+\frac {\left (\left (-n^{2}+1\right ) \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right )-a \right ) y}{2}&=0 \end{align*}

Solution by Maple

dsolve(diff(diff(diff(y(x),x),x),x)+(-n^2+1)*WeierstrassP(x,g2,g3)*diff(y(x),x)+1/2*((-n^2+1)*WeierstrassPPrime(x,g2,g3)-a)*y(x)=0,y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[((-a + (1 - n^2)*WeierstrassPPrime[x, {g2, g3}])*y[x])/2 + (1 - n^2)*WeierstrassP[x, {g2, g3}]*D[y[x],x] + Derivative[3][y][x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

Not solved