60.4.11 problem 1459

Internal problem ID [11462]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 3, linear third order
Problem number : 1459
Date solved : Monday, January 27, 2025 at 11:22:24 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime \prime }-\left (4 n \left (n +1\right ) \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+a \right ) y^{\prime }-2 n \left (n +1\right ) \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y&=0 \end{align*}

Solution by Maple

dsolve(diff(diff(diff(y(x),x),x),x)-(4*n*(n+1)*WeierstrassP(x,g2,g3)+a)*diff(y(x),x)-2*n*(n+1)*WeierstrassPPrime(x,g2,g3)*y(x)=0,y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[-2*n*(1 + n)*WeierstrassPPrime[x, {g2, g3}]*y[x] - (a + 4*n*(1 + n)*WeierstrassP[x, {g2, g3}])*D[y[x],x] + Derivative[3][y][x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

Not solved