60.3.118 problem 1132

Internal problem ID [11114]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1132
Date solved : Thursday, March 13, 2025 at 08:24:28 PM
CAS classification : [_Laguerre]

\begin{align*} 2 x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+a y&=0 \end{align*}

Maple. Time used: 0.205 (sec). Leaf size: 29
ode:=2*x*diff(diff(y(x),x),x)-(2*x-1)*diff(y(x),x)+a*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sqrt {x}\, \left (\operatorname {KummerM}\left (-\frac {a}{2}+\frac {1}{2}, \frac {3}{2}, x\right ) c_{1} +\operatorname {KummerU}\left (-\frac {a}{2}+\frac {1}{2}, \frac {3}{2}, x\right ) c_{2} \right ) \]
Mathematica. Time used: 0.037 (sec). Leaf size: 44
ode=a*y[x] - (-1 + 2*x)*D[y[x],x] + 2*x*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \sqrt {x} \left (c_1 \operatorname {HypergeometricU}\left (\frac {1-a}{2},\frac {3}{2},x\right )+c_2 L_{\frac {a-1}{2}}^{\frac {1}{2}}(x)\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a*y(x) + 2*x*Derivative(y(x), (x, 2)) - (2*x - 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False