Internal
problem
ID
[11115]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1133
Date
solved
:
Wednesday, March 05, 2025 at 01:42:35 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(2*x-1)*diff(diff(y(x),x),x)-(3*x-4)*diff(y(x),x)+(x-3)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-3 + x)*y[x] - (-4 + 3*x)*D[y[x],x] + (-1 + 2*x)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x - 3)*y(x) + (2*x - 1)*Derivative(y(x), (x, 2)) - (3*x - 4)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False