Internal
problem
ID
[11186]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1204
Date
solved
:
Wednesday, March 05, 2025 at 01:44:47 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+(a+2*b)*x^2*diff(y(x),x)+((a+b)*b*x^2-2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-2 + b*(a + b)*x^2)*y[x] + (a + 2*b)*x^2*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(x**2*(a + 2*b)*Derivative(y(x), x) + x**2*Derivative(y(x), (x, 2)) + (b*x**2*(a + b) - 2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False