Internal
problem
ID
[11569]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1570
Date
solved
:
Tuesday, January 28, 2025 at 06:06:54 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
✓ Solution by Maple
Time used: 0.039 (sec). Leaf size: 47
dsolve(x^4*diff(diff(diff(diff(y(x),x),x),x),x)+(6-4*a-4*c)*x^3*diff(diff(diff(y(x),x),x),x)+(-2*nu^2*c^2+2*a^2+4*(a+c-1)^2+4*(a-1)*(c-1)-1)*x^2*diff(diff(y(x),x),x)+(2*nu^2*c^2-2*a^2-(2*a-1)*(2*c-1))*(2*a+2*c-1)*x*diff(y(x),x)+((-c^2*nu^2+a^2)*(-c^2*nu^2+a^2+4*a*c+4*c^2)-b^4*c^4*x^(4*c))*y(x)=0,y(x), singsol=all)
✓ Solution by Mathematica
Time used: 0.067 (sec). Leaf size: 213
DSolve[((a^2 - c^2*\[Nu]^2)*(a^2 + 4*a*c + 4*c^2 - c^2*\[Nu]^2) - b^4*c^4*x^(4*c))*y[x] + (-1 + 2*a + 2*c)*(-2*a^2 - (-1 + 2*a)*(-1 + 2*c) + 2*c^2*\[Nu]^2)*x*D[y[x],x] + (-1 + 2*a^2 + 4*(-1 + a)*(-1 + c) + 4*(-1 + a + c)^2 - 2*c^2*\[Nu]^2)*x^2*D[y[x],{x,2}] + (6 - 4*a - 4*c)*x^3*Derivative[3][y][x] + x^4*Derivative[4][y][x] == 0,y[x],x,IncludeSingularSolutions -> True]