Internal
problem
ID
[11571]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1572
Date
solved
:
Tuesday, January 28, 2025 at 06:06:55 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
✓ Solution by Maple
Time used: 0.300 (sec). Leaf size: 35
dsolve((x^2-1)^2*diff(diff(diff(diff(y(x),x),x),x),x)+10*x*(x^2-1)*diff(diff(diff(y(x),x),x),x)+(24*x^2-8-2*(mu*(mu+1)+nu*(nu+1))*(x^2-1))*diff(diff(y(x),x),x)-6*x*(mu*(mu+1)+nu*(nu+1)-2)*diff(y(x),x)+((mu*(mu+1)-nu*(nu+1))^2-2*mu*(mu+1)-2*nu*(nu+1))*y(x)=0,y(x), singsol=all)
✗ Solution by Mathematica
Time used: 0.000 (sec). Leaf size: 0
DSolve[(-2*\[Mu]*(1 + \[Mu]) - 2*\[Nu]*(1 + \[Nu]) + (\[Mu]*(1 + \[Mu]) - \[Nu]*(1 + \[Nu]))^2)*y[x] - 6*(-2 + \[Mu]*(1 +\[Mu]) + \[Nu]*(1 + \[Nu]))*x*D[y[x],x] + (-8 + 24*x^3 - 2*(\[Mu]*(1 + \[Mu]) + \[Nu]*(1 + \[Nu]))*(-1 + x^2))*D[y[x],{x,2}] + 10*x*(-1 + x^2)*Derivative[3][y][x] + (-1 + x^2)^2*Derivative[4][y][x] == 0,y[x],x,IncludeSingularSolutions -> True]
Not solved