60.3.194 problem 1208

Internal problem ID [11190]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1208
Date solved : Wednesday, March 05, 2025 at 01:44:56 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x^{3} y^{\prime }+\left (x^{2}-2\right ) y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 35
ode:=x^2*diff(diff(y(x),x),x)+x^3*diff(y(x),x)+(x^2-2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\sqrt {2}\, \operatorname {erf}\left (\frac {\sqrt {2}\, x}{2}\right ) \sqrt {\pi }\, c_{2} -2 c_{2} x \,{\mathrm e}^{-\frac {x^{2}}{2}}+c_{1}}{x} \]
Mathematica. Time used: 0.11 (sec). Leaf size: 49
ode=(-2 + x^2)*y[x] + x^3*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\sqrt {2 \pi } c_2 \text {erf}\left (\frac {x}{\sqrt {2}}\right )-2 c_2 e^{-\frac {x^2}{2}} x+2 c_1}{2 x} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), x) + x**2*Derivative(y(x), (x, 2)) + (x**2 - 2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False