60.7.187 problem 1778 (book 6.187)

Internal problem ID [11776]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1778 (book 6.187)
Date solved : Monday, January 27, 2025 at 11:34:27 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \operatorname {f0} \left (x \right ) y y^{\prime \prime }+\operatorname {f1} \left (x \right ) {y^{\prime }}^{2}+\operatorname {f2} \left (x \right ) y y^{\prime }+\operatorname {f3} \left (x \right ) y^{2}&=0 \end{align*}

Solution by Maple

dsolve(f0(x)*y(x)*diff(diff(y(x),x),x)+f1(x)*diff(y(x),x)^2+f2(x)*y(x)*diff(y(x),x)+f3(x)*y(x)^2=0,y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[f3[x]*y[x]^2 + f2[x]*y[x]*D[y[x],x] + f1[x]*D[y[x],x]^2 + f0[x]*y[x]*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 

Not solved