60.7.188 problem 1779 (book 6.188)

Internal problem ID [11777]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1779 (book 6.188)
Date solved : Monday, January 27, 2025 at 11:34:27 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} y^{2} y^{\prime \prime }-a&=0 \end{align*}

Solution by Maple

Time used: 0.112 (sec). Leaf size: 369

dsolve(y(x)^2*diff(diff(y(x),x),x)-a=0,y(x), singsol=all)
 
\begin{align*} y &= \frac {c_{1} \left (a^{2} c_{1}^{2}+2 a c_{1} {\mathrm e}^{\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} a^{2}-2 \textit {\_Z} \,c_{1}^{3} a \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2}-2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{2} -2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) x \right )}+{\mathrm e}^{2 \operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} a^{2}-2 \textit {\_Z} \,c_{1}^{3} a \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2}-2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{2} -2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) x \right )}\right ) {\mathrm e}^{-\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} a^{2}-2 \textit {\_Z} \,c_{1}^{3} a \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2}-2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{2} -2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) x \right )}}{2} \\ y &= \frac {c_{1} \left (a^{2} c_{1}^{2}+2 a c_{1} {\mathrm e}^{\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} a^{2}-2 \textit {\_Z} \,c_{1}^{3} a \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2}+2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{2} +2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) x \right )}+{\mathrm e}^{2 \operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} a^{2}-2 \textit {\_Z} \,c_{1}^{3} a \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2}+2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{2} +2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) x \right )}\right ) {\mathrm e}^{-\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} a^{2}-2 \textit {\_Z} \,c_{1}^{3} a \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2}+2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{2} +2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) x \right )}}{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.175 (sec). Leaf size: 65

DSolve[-a + y[x]^2*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\left (\frac {2 a \text {arctanh}\left (\frac {\sqrt {-\frac {2 a}{y(x)}+c_1}}{\sqrt {c_1}}\right )}{c_1{}^{3/2}}+\frac {y(x) \sqrt {-\frac {2 a}{y(x)}+c_1}}{c_1}\right ){}^2=(x+c_2){}^2,y(x)\right ] \]