61.4.6 problem 27

Internal problem ID [12111]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number : 27
Date solved : Tuesday, January 28, 2025 at 12:24:54 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\lambda x} y^{2}-a b \,x^{n} {\mathrm e}^{\lambda x} y+b n \,x^{n -1} \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 88

dsolve(diff(y(x),x)=a*exp(lambda*x)*y(x)^2-a*b*x^(n)*exp(lambda*x)*y(x)+b*n*x^(n-1),y(x), singsol=all)
 
\[ y = \frac {x^{n} \lambda \left (\int {\mathrm e}^{\lambda x +a b \left (\int x^{n} {\mathrm e}^{\lambda x}d x \right )}d x \right ) c_{1} a b +x^{n} a b -c_{1} \lambda \,{\mathrm e}^{a b \left (\int x^{n} {\mathrm e}^{\lambda x}d x \right )}}{a \left (\lambda \left (\int {\mathrm e}^{\lambda x +a b \left (\int x^{n} {\mathrm e}^{\lambda x}d x \right )}d x \right ) c_{1} +1\right )} \]

Solution by Mathematica

Time used: 3.332 (sec). Leaf size: 260

DSolve[D[y[x],x]==a*Exp[\[Lambda]*x]*y[x]^2-a*b*x^(n)*Exp[\[Lambda]*x]*y[x]+b*n*x^(n-1),y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {-a b c_1 \left (\frac {\log \left (e^{\lambda x}\right )}{\lambda }\right )^n \int _1^{e^{x \lambda }}\exp \left (-\int _1^{K[2]}-\frac {a b \left (\frac {\log (K[1])}{\lambda }\right )^n}{\lambda }dK[1]\right )dK[2]+c_1 \lambda \exp \left (-\int _1^{e^{x \lambda }}-\frac {a b \left (\frac {\log (K[1])}{\lambda }\right )^n}{\lambda }dK[1]\right )-a b \left (\frac {\log \left (e^{\lambda x}\right )}{\lambda }\right )^n}{a+a c_1 \int _1^{e^{x \lambda }}\exp \left (-\int _1^{K[2]}-\frac {a b \left (\frac {\log (K[1])}{\lambda }\right )^n}{\lambda }dK[1]\right )dK[2]} \\ y(x)\to b \left (\frac {\log \left (e^{\lambda x}\right )}{\lambda }\right )^n-\frac {\lambda \exp \left (-\int _1^{e^{x \lambda }}-\frac {a b \left (\frac {\log (K[1])}{\lambda }\right )^n}{\lambda }dK[1]\right )}{a \int _1^{e^{x \lambda }}\exp \left (-\int _1^{K[2]}-\frac {a b \left (\frac {\log (K[1])}{\lambda }\right )^n}{\lambda }dK[1]\right )dK[2]} \\ \end{align*}