61.4.7 problem 28

Internal problem ID [12112]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number : 28
Date solved : Tuesday, January 28, 2025 at 12:24:59 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}+b \lambda \,{\mathrm e}^{\lambda x}-a \,b^{2} x^{n} {\mathrm e}^{2 \lambda x} \end{align*}

Solution by Maple

dsolve(diff(y(x),x)=a*x^n*y(x)^2+b*lambda*exp(lambda*x)-a*b^2*x^n*exp(2*lambda*x),y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[D[y[x],x]==a*x^n*y[x]^2+b*\[Lambda]*Exp[\[Lambda]*x]-a*b^2*x^n*Exp[2*\[Lambda]*x],y[x],x,IncludeSingularSolutions -> True]
 

Not solved