61.5.14 problem 14

Internal problem ID [12138]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number : 14
Date solved : Tuesday, January 28, 2025 at 12:30:46 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=a \sinh \left (\lambda x \right ) y^{2}+b \sinh \left (\lambda x \right ) \cosh \left (\lambda x \right )^{n} \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 246

dsolve(diff(y(x),x)=a*sinh(lambda*x)*y(x)^2+b*sinh(lambda*x)*cosh(lambda*x)^n,y(x), singsol=all)
 
\[ y = -\frac {\left (\lambda \sqrt {a}\, \left (\operatorname {BesselY}\left (\frac {1}{n +2}, \frac {2 \sqrt {a}\, \sqrt {b}\, \cosh \left (\lambda x \right )^{\frac {n}{2}+1}}{\lambda \left (n +2\right )}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {1}{n +2}, \frac {2 \sqrt {a}\, \sqrt {b}\, \cosh \left (\lambda x \right )^{\frac {n}{2}+1}}{\lambda \left (n +2\right )}\right )\right )-a \cosh \left (\lambda x \right )^{\frac {n}{2}+1} \left (\operatorname {BesselY}\left (\frac {n +3}{n +2}, \frac {2 \sqrt {a}\, \sqrt {b}\, \cosh \left (\lambda x \right )^{\frac {n}{2}+1}}{\lambda \left (n +2\right )}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {n +3}{n +2}, \frac {2 \sqrt {a}\, \sqrt {b}\, \cosh \left (\lambda x \right )^{\frac {n}{2}+1}}{\lambda \left (n +2\right )}\right )\right ) \sqrt {b}\right ) \operatorname {sech}\left (\lambda x \right )}{a^{{3}/{2}} \left (\operatorname {BesselY}\left (\frac {1}{n +2}, \frac {2 \sqrt {a}\, \sqrt {b}\, \cosh \left (\lambda x \right )^{\frac {n}{2}+1}}{\lambda \left (n +2\right )}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {1}{n +2}, \frac {2 \sqrt {a}\, \sqrt {b}\, \cosh \left (\lambda x \right )^{\frac {n}{2}+1}}{\lambda \left (n +2\right )}\right )\right )} \]

Solution by Mathematica

Time used: 0.716 (sec). Leaf size: 667

DSolve[D[y[x],x]==a*Sinh[\[Lambda]*x]*y[x]^2+b*Sinh[\[Lambda]*x]*Cosh[\[Lambda]*x]^n,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {\sqrt {a} \sqrt {b} c_1 \operatorname {Gamma}\left (\frac {n+1}{n+2}\right ) \cosh ^{\frac {n}{2}}(\lambda x) \operatorname {BesselJ}\left (\frac {n+1}{n+2},\frac {2 \sqrt {a} \sqrt {b} \cosh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )-\text {sech}(\lambda x) \left (\operatorname {Gamma}\left (1+\frac {1}{n+2}\right ) \left (\sqrt {a} \sqrt {b} \cosh ^{\frac {n}{2}+1}(\lambda x) \left (\operatorname {BesselJ}\left (\frac {1}{n+2}-1,\frac {2 \sqrt {a} \sqrt {b} \cosh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )-\operatorname {BesselJ}\left (1+\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} \cosh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )\right )+\lambda \operatorname {BesselJ}\left (\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} \cosh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )\right )+\sqrt {a} \sqrt {b} c_1 \operatorname {Gamma}\left (\frac {n+1}{n+2}\right ) \cosh ^{\frac {n}{2}+1}(\lambda x) \operatorname {BesselJ}\left (-\frac {n+3}{n+2},\frac {2 \sqrt {a} \sqrt {b} \cosh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )+c_1 \lambda \operatorname {Gamma}\left (\frac {n+1}{n+2}\right ) \operatorname {BesselJ}\left (-\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} \cosh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )\right )}{2 a \left (\operatorname {Gamma}\left (1+\frac {1}{n+2}\right ) \operatorname {BesselJ}\left (\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} \cosh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )+c_1 \operatorname {Gamma}\left (\frac {n+1}{n+2}\right ) \operatorname {BesselJ}\left (-\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} \cosh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )\right )} \\ y(x)\to \frac {\frac {\sqrt {a} \sqrt {b} \cosh ^{\frac {n}{2}}(\lambda x) \left (\operatorname {BesselJ}\left (\frac {n+1}{n+2},\frac {2 \sqrt {a} \sqrt {b} \cosh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )-\operatorname {BesselJ}\left (-\frac {n+3}{n+2},\frac {2 \sqrt {a} \sqrt {b} \cosh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )\right )}{\operatorname {BesselJ}\left (-\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} \cosh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )}-\lambda \text {sech}(\lambda x)}{2 a} \\ \end{align*}