61.5.15 problem 15

Internal problem ID [12139]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number : 15
Date solved : Tuesday, January 28, 2025 at 12:30:57 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=a \cosh \left (\lambda x \right ) y^{2}+b \cosh \left (\lambda x \right ) \sinh \left (\lambda x \right )^{n} \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 1064

dsolve(diff(y(x),x)=a*cosh(lambda*x)*y(x)^2+b*cosh(lambda*x)*sinh(lambda*x)^n,y(x), singsol=all)
 
\[ \text {Expression too large to display} \]

Solution by Mathematica

Time used: 0.635 (sec). Leaf size: 633

DSolve[D[y[x],x]==a*Cosh[\[Lambda]*x]*y[x]^2+b*Cosh[\[Lambda]*x]*Sinh[\[Lambda]*x]^n,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {\text {csch}(\lambda x) \left (-\lambda \operatorname {Gamma}\left (1+\frac {1}{n+2}\right ) \operatorname {BesselJ}\left (\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} \sinh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )+\sqrt {a} \sqrt {b} \sinh ^{\frac {n}{2}+1}(\lambda x) \left (\operatorname {Gamma}\left (1+\frac {1}{n+2}\right ) \left (\operatorname {BesselJ}\left (1+\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} \sinh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )-\operatorname {BesselJ}\left (\frac {1}{n+2}-1,\frac {2 \sqrt {a} \sqrt {b} \sinh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )\right )+c_1 \operatorname {Gamma}\left (\frac {n+1}{n+2}\right ) \operatorname {BesselJ}\left (\frac {n+1}{n+2},\frac {2 \sqrt {a} \sqrt {b} \sinh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )-c_1 \operatorname {Gamma}\left (\frac {n+1}{n+2}\right ) \operatorname {BesselJ}\left (-\frac {n+3}{n+2},\frac {2 \sqrt {a} \sqrt {b} \sinh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )\right )-c_1 \lambda \operatorname {Gamma}\left (\frac {n+1}{n+2}\right ) \operatorname {BesselJ}\left (-\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} \sinh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )\right )}{2 a \left (\operatorname {Gamma}\left (1+\frac {1}{n+2}\right ) \operatorname {BesselJ}\left (\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} \sinh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )+c_1 \operatorname {Gamma}\left (\frac {n+1}{n+2}\right ) \operatorname {BesselJ}\left (-\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} \sinh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )\right )} \\ y(x)\to \frac {\frac {\sqrt {a} \sqrt {b} \sinh ^{\frac {n}{2}}(\lambda x) \left (\operatorname {BesselJ}\left (\frac {n+1}{n+2},\frac {2 \sqrt {a} \sqrt {b} \sinh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )-\operatorname {BesselJ}\left (-\frac {n+3}{n+2},\frac {2 \sqrt {a} \sqrt {b} \sinh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )\right )}{\operatorname {BesselJ}\left (-\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} \sinh ^{\frac {n}{2}+1}(x \lambda )}{n \lambda +2 \lambda }\right )}-\lambda \text {csch}(\lambda x)}{2 a} \\ \end{align*}