61.9.1 problem 1

Internal problem ID [12175]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
Problem number : 1
Date solved : Tuesday, January 28, 2025 at 12:48:37 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=\alpha y^{2}+\beta +\gamma \sin \left (\lambda x \right ) \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 110

dsolve(diff(y(x),x)=alpha*y(x)^2+beta+gamma*sin(lambda*x),y(x), singsol=all)
 
\[ y = -\frac {\lambda \left (c_{1} \operatorname {MathieuSPrime}\left (\frac {4 \alpha \beta }{\lambda ^{2}}, -\frac {2 \alpha \gamma }{\lambda ^{2}}, -\frac {\pi }{4}+\frac {\lambda x}{2}\right )+\operatorname {MathieuCPrime}\left (\frac {4 \alpha \beta }{\lambda ^{2}}, -\frac {2 \alpha \gamma }{\lambda ^{2}}, -\frac {\pi }{4}+\frac {\lambda x}{2}\right )\right )}{2 \alpha \left (c_{1} \operatorname {MathieuS}\left (\frac {4 \alpha \beta }{\lambda ^{2}}, -\frac {2 \alpha \gamma }{\lambda ^{2}}, -\frac {\pi }{4}+\frac {\lambda x}{2}\right )+\operatorname {MathieuC}\left (\frac {4 \alpha \beta }{\lambda ^{2}}, -\frac {2 \alpha \gamma }{\lambda ^{2}}, -\frac {\pi }{4}+\frac {\lambda x}{2}\right )\right )} \]

Solution by Mathematica

Time used: 0.267 (sec). Leaf size: 191

DSolve[D[y[x],x]==\[Alpha]*y[x]^2+\[Beta]+\[Gamma]*Sin[\[Lambda]*x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {\lambda \left (\text {MathieuSPrime}\left [\frac {4 \alpha \beta }{\lambda ^2},-\frac {2 \alpha \gamma }{\lambda ^2},\frac {1}{4} (\pi -2 \lambda x)\right ]+c_1 \text {MathieuCPrime}\left [\frac {4 \alpha \beta }{\lambda ^2},-\frac {2 \alpha \gamma }{\lambda ^2},\frac {1}{4} (2 \lambda x-\pi )\right ]\right )}{2 \alpha \left (\text {MathieuS}\left [\frac {4 \alpha \beta }{\lambda ^2},-\frac {2 \alpha \gamma }{\lambda ^2},\frac {1}{4} (2 \lambda x-\pi )\right ]+c_1 \text {MathieuC}\left [\frac {4 \alpha \beta }{\lambda ^2},-\frac {2 \alpha \gamma }{\lambda ^2},\frac {1}{4} (\pi -2 \lambda x)\right ]\right )} \\ y(x)\to \frac {\lambda \text {MathieuCPrime}\left [\frac {4 \alpha \beta }{\lambda ^2},-\frac {2 \alpha \gamma }{\lambda ^2},\frac {1}{4} (\pi -2 \lambda x)\right ]}{2 \alpha \text {MathieuC}\left [\frac {4 \alpha \beta }{\lambda ^2},-\frac {2 \alpha \gamma }{\lambda ^2},\frac {1}{4} (\pi -2 \lambda x)\right ]} \\ \end{align*}