61.9.2 problem 2

Internal problem ID [12176]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
Problem number : 2
Date solved : Tuesday, January 28, 2025 at 12:48:41 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}-a^{2}+a \lambda \sin \left (\lambda x \right )+a^{2} \sin \left (\lambda x \right )^{2} \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 289

dsolve(diff(y(x),x)=y(x)^2-a^2+a*lambda*sin(lambda*x)+a^2*sin(lambda*x)^2,y(x), singsol=all)
 
\[ y = \frac {\left (-2 a c_{1} \cos \left (\lambda x \right ) \sin \left (\frac {\pi }{4}+\frac {\lambda x}{2}\right )-c_{1} \lambda \cos \left (\frac {\pi }{4}+\frac {\lambda x}{2}\right )\right ) \operatorname {HeunC}\left (\frac {4 a}{\lambda }, \frac {1}{2}, -\frac {1}{2}, -\frac {2 a}{\lambda }, \frac {8 a +3 \lambda }{8 \lambda }, \frac {\sin \left (\lambda x \right )}{2}+\frac {1}{2}\right )-2 \left (\operatorname {HeunC}\left (\frac {4 a}{\lambda }, -\frac {1}{2}, -\frac {1}{2}, -\frac {2 a}{\lambda }, \frac {8 a +3 \lambda }{8 \lambda }, \frac {\sin \left (\lambda x \right )}{2}+\frac {1}{2}\right ) a +\frac {\lambda \left (\operatorname {HeunCPrime}\left (\frac {4 a}{\lambda }, \frac {1}{2}, -\frac {1}{2}, -\frac {2 a}{\lambda }, \frac {8 a +3 \lambda }{8 \lambda }, \frac {\sin \left (\lambda x \right )}{2}+\frac {1}{2}\right ) c_{1} \sin \left (\frac {\pi }{4}+\frac {\lambda x}{2}\right )+\operatorname {HeunCPrime}\left (\frac {4 a}{\lambda }, -\frac {1}{2}, -\frac {1}{2}, -\frac {2 a}{\lambda }, \frac {8 a +3 \lambda }{8 \lambda }, \frac {\sin \left (\lambda x \right )}{2}+\frac {1}{2}\right )\right )}{2}\right ) \cos \left (\lambda x \right )}{2 \sin \left (\frac {\pi }{4}+\frac {\lambda x}{2}\right ) \operatorname {HeunC}\left (\frac {4 a}{\lambda }, \frac {1}{2}, -\frac {1}{2}, -\frac {2 a}{\lambda }, \frac {8 a +3 \lambda }{8 \lambda }, \frac {\sin \left (\lambda x \right )}{2}+\frac {1}{2}\right ) c_{1} +2 \operatorname {HeunC}\left (\frac {4 a}{\lambda }, -\frac {1}{2}, -\frac {1}{2}, -\frac {2 a}{\lambda }, \frac {8 a +3 \lambda }{8 \lambda }, \frac {\sin \left (\lambda x \right )}{2}+\frac {1}{2}\right )} \]

Solution by Mathematica

Time used: 1.766 (sec). Leaf size: 157

DSolve[D[y[x],x]==y[x]^2-a^2+a*\[Lambda]*Sin[\[Lambda]*x]+a^2*Sin[\[Lambda]*x]^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {c_1 \exp \left (\int _1^x-2 a \cos (\lambda K[1])dK[1]\right )+a c_1 \cos (\lambda x) \int _1^x\exp \left (\int _1^{K[2]}-2 a \cos (\lambda K[1])dK[1]\right )dK[2]+a \cos (\lambda x)}{1+c_1 \int _1^x\exp \left (\int _1^{K[2]}-2 a \cos (\lambda K[1])dK[1]\right )dK[2]} \\ y(x)\to -\frac {\exp \left (\int _1^x-2 a \cos (\lambda K[1])dK[1]\right )}{\int _1^x\exp \left (\int _1^{K[2]}-2 a \cos (\lambda K[1])dK[1]\right )dK[2]}-a \cos (\lambda x) \\ \end{align*}