61.10.7 problem 20

Internal problem ID [12194]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine.
Problem number : 20
Date solved : Tuesday, January 28, 2025 at 01:01:50 AM
CAS classification : [_Riccati]

\begin{align*} 2 y^{\prime }&=\left (\lambda +a -a \cos \left (\lambda x \right )\right ) y^{2}+\lambda -a -a \cos \left (\lambda x \right ) \end{align*}

Solution by Maple

Time used: 0.009 (sec). Leaf size: 120

dsolve(2*diff(y(x),x)=(lambda+a-a*cos(lambda*x))*y(x)^2+lambda-a-a*cos(lambda*x),y(x), singsol=all)
 
\[ y = \frac {\cot \left (\frac {\lambda x}{2}\right ) \lambda \left (\int \operatorname {csgn}\left (\sin \left (\frac {\lambda x}{2}\right )\right ) \left (\csc \left (\frac {\lambda x}{2}\right )^{2} \lambda +2 a \right ) {\mathrm e}^{\frac {a \cos \left (\lambda x \right )}{\lambda }}d x \right ) c_{1} +2 \csc \left (\frac {\lambda x}{2}\right )^{2} \operatorname {csgn}\left (\sin \left (\frac {\lambda x}{2}\right )\right ) {\mathrm e}^{\frac {a \cos \left (\lambda x \right )}{\lambda }} c_{1} \lambda -2 i \cot \left (\frac {\lambda x}{2}\right )}{-\lambda \left (\int \operatorname {csgn}\left (\sin \left (\frac {\lambda x}{2}\right )\right ) \left (\csc \left (\frac {\lambda x}{2}\right )^{2} \lambda +2 a \right ) {\mathrm e}^{\frac {a \cos \left (\lambda x \right )}{\lambda }}d x \right ) c_{1} +2 i} \]

Solution by Mathematica

Time used: 10.395 (sec). Leaf size: 321

DSolve[2*D[y[x],x]==(\[Lambda]+a-a*Cos[\[Lambda]*x])*y[x]^2+\[Lambda]-a-a*Cos[\[Lambda]*x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {2 \left (c_1 \cot \left (\frac {\lambda x}{2}\right ) \int _1^xe^{-\frac {2 a \sin ^2\left (\frac {1}{2} \lambda K[1]\right )}{\lambda }} \left (\lambda \csc ^2\left (\frac {1}{2} \lambda K[1]\right )+2 a\right )dK[1]+2 c_1 \csc ^2\left (\frac {\lambda x}{2}\right ) e^{-\frac {2 a \sin ^2\left (\frac {\lambda x}{2}\right )}{\lambda }}+\cot \left (\frac {\lambda x}{2}\right )\right )}{2+2 c_1 \int _1^xe^{-\frac {2 a \sin ^2\left (\frac {1}{2} \lambda K[1]\right )}{\lambda }} \left (\lambda \csc ^2\left (\frac {1}{2} \lambda K[1]\right )+2 a\right )dK[1]} \\ y(x)\to \frac {1}{2} \csc ^2\left (\frac {\lambda x}{2}\right ) \left (-\frac {4 e^{-\frac {2 a \sin ^2\left (\frac {\lambda x}{2}\right )}{\lambda }}}{\int _1^xe^{-\frac {2 a \sin ^2\left (\frac {1}{2} \lambda K[1]\right )}{\lambda }} \left (\lambda \csc ^2\left (\frac {1}{2} \lambda K[1]\right )+2 a\right )dK[1]}-\sin (\lambda x)\right ) \\ y(x)\to \frac {1}{2} \csc ^2\left (\frac {\lambda x}{2}\right ) \left (-\frac {4 e^{-\frac {2 a \sin ^2\left (\frac {\lambda x}{2}\right )}{\lambda }}}{\int _1^xe^{-\frac {2 a \sin ^2\left (\frac {1}{2} \lambda K[1]\right )}{\lambda }} \left (\lambda \csc ^2\left (\frac {1}{2} \lambda K[1]\right )+2 a\right )dK[1]}-\sin (\lambda x)\right ) \\ \end{align*}