61.10.8 problem 21

Internal problem ID [12195]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine.
Problem number : 21
Date solved : Tuesday, January 28, 2025 at 01:02:35 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=\left (\lambda +a \cos \left (\lambda x \right )^{2}\right ) y^{2}+\lambda -a +a \cos \left (\lambda x \right )^{2} \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 100

dsolve(diff(y(x),x)=(lambda+a*cos(lambda*x)^2)*y(x)^2+lambda-a+a*cos(lambda*x)^2,y(x), singsol=all)
 
\[ y = \frac {-2 \tan \left (\lambda x \right ) \lambda \left (\int {\mathrm e}^{-\frac {a \cos \left (2 \lambda x \right )}{2 \lambda }} \left (\sec \left (\lambda x \right )^{2} \lambda +a \right )d x \right ) c_{1} +i \tan \left (\lambda x \right )+2 \sec \left (\lambda x \right )^{2} {\mathrm e}^{-\frac {a \cos \left (2 \lambda x \right )}{2 \lambda }} c_{1} \lambda }{-2 \lambda \left (\int {\mathrm e}^{-\frac {a \cos \left (2 \lambda x \right )}{2 \lambda }} \left (\sec \left (\lambda x \right )^{2} \lambda +a \right )d x \right ) c_{1} +i} \]

Solution by Mathematica

Time used: 10.880 (sec). Leaf size: 191

DSolve[D[y[x],x]==(\[Lambda]+a*Cos[\[Lambda]*x]^2)*y[x]^2+\[Lambda]-a+a*Cos[\[Lambda]*x]^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {2 \left (c_1 \tan (\lambda x) \int _1^xe^{-\frac {a \cos ^2(\lambda K[1])}{\lambda }} \left (\lambda \sec ^2(\lambda K[1])+a\right )dK[1]+c_1 \sec ^2(\lambda x) \left (-e^{-\frac {a \cos ^2(\lambda x)}{\lambda }}\right )+\tan (\lambda x)\right )}{2+2 c_1 \int _1^xe^{-\frac {a \cos ^2(\lambda K[1])}{\lambda }} \left (\lambda \sec ^2(\lambda K[1])+a\right )dK[1]} \\ y(x)\to \frac {1}{2} \sec ^2(\lambda x) \left (\sin (2 \lambda x)-\frac {2 e^{-\frac {a \cos ^2(\lambda x)}{\lambda }}}{\int _1^xe^{-\frac {a \cos ^2(\lambda K[1])}{\lambda }} \left (\lambda \sec ^2(\lambda K[1])+a\right )dK[1]}\right ) \\ \end{align*}