61.21.12 problem 12

Internal problem ID [12323]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number : 12
Date solved : Tuesday, January 28, 2025 at 02:37:00 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}+\lambda ^{2}+\frac {f \left (\cot \left (\lambda x \right )\right )}{\sin \left (\lambda x \right )^{4}} \end{align*}

Solution by Maple

dsolve(diff(y(x),x)=y(x)^2+lambda^2+sin(lambda*x)^(-4)*f(cot(lambda*x)),y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[D[y[x],x]==y[x]^2+\[Lambda]^2+Sin[\[Lambda]*x]^(-4)*f[Cot[\[Lambda]*x]],y[x],x,IncludeSingularSolutions -> True]
 

Not solved