61.21.13 problem 13

Internal problem ID [12324]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number : 13
Date solved : Tuesday, January 28, 2025 at 02:38:46 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}+\lambda ^{2}+\frac {f \left (\tan \left (\lambda x \right )\right )}{\cos \left (\lambda x \right )^{4}} \end{align*}

Solution by Maple

dsolve(diff(y(x),x)=y(x)^2+lambda^2+cos(lambda*x)^(-4)*f(tan(lambda*x)),y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[D[y[x],x]==y[x]^2+\[Lambda]^2+Cos[\[Lambda]*x]^(-4)*f[Tan[\[Lambda]*x]],y[x],x,IncludeSingularSolutions -> True]
 

Not solved