61.2.70 problem 70

Internal problem ID [11997]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number : 70
Date solved : Wednesday, March 05, 2025 at 03:42:21 PM
CAS classification : [_rational, _Riccati]

\begin{align*} x^{2} \left (x^{2}+a \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b \,x^{2}+c \right ) y+s&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 1329
ode:=x^2*(x^2+a)*(diff(y(x),x)+lambda*y(x)^2)+x*(b*x^2+c)*y(x)+s = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {Expression too large to display} \]
Mathematica. Time used: 5.123 (sec). Leaf size: 1470
ode=x^2*(x^2+a)*(D[y[x],x]+\[Lambda]*y[x]^2)+x*(b*x^2+c)*y[x]+s==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
cg = symbols("cg") 
s = symbols("s") 
y = Function("y") 
ode = Eq(s + x**2*(a + x**2)*(cg*y(x)**2 + Derivative(y(x), x)) + x*(b*x**2 + c)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out