Internal
problem
ID
[11998]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
71
Date
solved
:
Wednesday, March 05, 2025 at 03:42:29 PM
CAS
classification
:
[_rational, _Riccati]
ode:=a*(x^2-1)*(diff(y(x),x)+lambda*y(x)^2)+b*x*(x^2-1)*y(x)+c*x^2+d*x+s = 0; dsolve(ode,y(x), singsol=all);
ode=a*(x^2-1)*(D[y[x],x]+\[Lambda]*y[x]^2)+b*x*(x^2-1)*y[x]+c*x^2+d*x+s==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") d = symbols("d") cg = symbols("cg") s = symbols("s") y = Function("y") ode = Eq(a*(x**2 - 1)*(cg*y(x)**2 + Derivative(y(x), x)) + b*x*(x**2 - 1)*y(x) + c*x**2 + d*x + s,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out